Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis.
نویسندگان
چکیده
In response to a defined panel of stimuli, immature macrophages can be classified into two major phenotypes: proinflammatory (M1) and anti-inflammatory (M2). Although both phenotypes have been implicated in several chronic inflammatory diseases, their direct role in bone resorption remains unclear. The present study investigated the possible effects of M1 and M2 macrophages on RANKL-induced osteoclastogenesis. In osteoclastogenesis assays using RAW264.7 cells or bone marrow cells as osteoclast precursors, addition of M1 macrophages significantly suppressed RANKL-induced osteoclastogenesis compared to nonstimulated conditions (M0), addition of M2 macrophages, or no macrophage addition (P < 0.05), suggesting that M1 macrophages can downregulate osteoclastogenesis. This effect was maintained when direct contact between M1 and osteoclast precursors was interrupted by cell culture insertion, indicating engagement of soluble factors released from M1. M1 macrophages developed from interferon gamma (IFN-γ) knockout (IFN-γ-KO) mice lost the ability to downregulate osteoclastogenesis. Antibody-based neutralization of interleukin-12 (IL-12), but not IL-10, produced by M1 macrophages also abrogated M1-mediated downregulation of osteoclastogenesis. Real-time PCR analyses showed that IFN-γ suppressed gene expression of NFATc1, a master regulator of osteoclastogenesis, whereas IL-12 increased the apoptosis of osteoclasts, suggesting molecular mechanisms underlying the possible roles of IFN-γ or IL-12 in M1-mediated inhibition of osteoclastogenesis. These findings were confirmed in an in vivo ligature-induced mouse periodontitis model in which adoptive transfer of M1 macrophages showed a significantly lower level of bone loss and less tartrate-resistant acid phosphatase (TRAP)-positive cell induction than M0 or M2 macrophage transfer. In conclusion, by its secretion of IFN-γ and IL-12, M1, but not M0 or M2, was demonstrated to inhibit osteoclastogenesis.
منابع مشابه
Molecular Mechanism of Thiazolidinedione-Mediated Inhibitory Effects on Osteoclastogenesis
Thiazolidinediones are synthetic peroxisome proliferator-activated receptor γ agonists used to treat type 2 diabetes mellitus. Clinical evidence indicates that thiazolidinediones increase fracture risks in type 2 diabetes mellitus patients, but the mechanism by which thiazolidinediones augment fracture risks is not fully understood. Several groups recently demonstrated that thiazolidinediones s...
متن کاملThe Alternative Faces of Macrophage Generate Osteoclasts
The understanding of how osteoclasts are generated and whether they can be altered by inflammatory stimuli is a topic of particular interest for osteoclastogenesis. It is known that the monocyte/macrophage lineage gives rise to osteoclasts (OCs) by the action of macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL), which induce cell differentia...
متن کاملMacrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.
The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodo...
متن کاملInfection of RANKL-Primed RAW-D Macrophages with Porphyromonas gingivalis Promotes Osteoclastogenesis in a TNF-α-Independent Manner
Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differenti...
متن کاملWear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis
Objective(s): The study aimed to uncover the underlying mechanism linking wear particles to osteoclast differentiation, and we explored the effect of titanium particles of different sizes on CD147 expression and autophagy in macrophages. Materials and Methods: Effects of titanium particles on CD147 and RANKL mRNA were detected by QPCR; protein level of CD147 and Beclin-1 were detected by Wester...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 84 10 شماره
صفحات -
تاریخ انتشار 2016